編者按:1991年,瑞士聯(lián)邦理工學(xué)院化學(xué)家Michael Graetzel發(fā)明了染料敏化太陽能電池(DSSC)。其在暗淡的光線下表現(xiàn)最好,并且比標(biāo)準(zhǔn)的半導(dǎo)體組件更便宜。然而,在陽光充足的條件下,最好的DSSC僅能將太陽光中14%的能量轉(zhuǎn)化成電力,而現(xiàn)在標(biāo)準(zhǔn)太陽能電池可達(dá)到24%左右。
這主要是因為能量來得太快,以至于DSSC處理不過來。當(dāng)能量以較慢的速度到來時,比如在低強度室內(nèi)光線下,現(xiàn)在,Graetze新發(fā)明的DSSC可將其吸收的28%的光能轉(zhuǎn)化成電力。
這種新的DSSC仍擁有兩個收集負(fù)電荷和正電荷的電極。但在中間,它們擁有一種通常是二氧化鈦(TiO2)顆粒集合體的不同電子導(dǎo)體,而不僅僅是硅。TiO2是一種很弱的光吸收劑,因此研究人員在這些顆粒表面涂上可作為超強光吸收劑的有機染料分子。被吸收的光子會激發(fā)這些染料分子上的電子和空穴,就像在硅中一樣。而染料立即將被激發(fā)的電子移交給TiO2顆粒,電子則會沿著它們快速移動到正極。與此同時,空穴被傾倒進一種名為電解液的導(dǎo)電液體中。在那里,它們不斷滲透并進入帶負(fù)電荷的電極。
以往DSSC的問題在于空穴無法非常迅速地穿過電解液。因此,它們常常在染料和TiO2顆粒附近堆積。如果被激發(fā)的電子最終撞入空穴,它們便會合并,產(chǎn)生熱量而非電力。
為解決這一問題,研究人員一直嘗試讓電解液變薄,從而使空穴無須穿行很遠(yuǎn),便能到達(dá)目的地。不過,這些薄層中的任何缺陷都會導(dǎo)致設(shè)備遭到致命打擊,并且破壞掉整個太陽能電池。而現(xiàn)在,Graetzel和同事提出了一種可能的解決方案。他們設(shè)計了一種染料和空穴導(dǎo)電分子的組合物。它能使自己緊緊包裹在TiO2顆粒周圍,從而創(chuàng)建沒有任何缺陷的緊身層。這意味著緩慢移動的空穴在到達(dá)負(fù)極前穿行的距離變小。研究人員在《焦耳》雜志上報告稱,緊身層將DSSC的漫射光效率提高到32%——接近理論上的最大值。
原標(biāo)題:一種染料敏化太陽能電池的實驗室效率達(dá)到了28%